Constructive Zermelo-Fraenkel Set Theory, Power Set, and the Calculus of Constructions

نویسنده

  • Michael Rathjen
چکیده

If the power set operation is considered as a definite operation, but the universe of all sets is regarded as an indefinite totality, we are led to systems of set theory having Power Set as an axiom but only Bounded Separation axioms and intuitionistic logic for reasoning about the universe at large. The study of subsystems of ZF formulated in intuitionistic logic with Bounded Separation but containing the Power Set axiom was apparently initiated by Pozsgay (1971, 1972) and then pursued more systematically by Tharp (1971), Friedman (1973a), and Wolf (1974). These systems are actually semi-intuitionistic as they contain the law of excluded middle for bounded formulae. Pozsgay had conjectured that his system is as strong as ZF, but Tharp and Friedman proved its consistency in ZF using a modification of Kleene’s method of realizability. Wolf established the equivalence in strength of several related systems. In the classical context, weak subsystems of ZF with Bounded Separation and Power Set have been studied by Thiele (1968), Friedman (1973b) and more recently

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finiteness in a Minimalist Foundation

We analyze the concepts of finite set and finite subset from the perspective of a minimalist foundational theory which has recently been introduced by Maria Emilia Maietti and the second author. The main feature of that theory and, as a consequence, of our approach is compatibility with other foundational theories such as Zermelo-Fraenkel set theory, Martin-Löf’s intuitionistic Type Theory, top...

متن کامل

The disjunction and related properties for constructive Zermelo-Fraenkel set theory

This paper proves that the disjunction property, the numerical existence property, Church’s rule, and several other metamathematical properties hold true for Constructive Zermelo-Fraenkel Set Theory, CZF, and also for the theory CZF augmented by the Regular Extension Axiom. As regards the proof technique, it features a self-validating semantics for CZF that combines realizability for extensiona...

متن کامل

On the constructive Dedekind reals

In order to build the collection of Cauchy reals as a set in constructive set theory, the only power set-like principle needed is exponentiation. In contrast, the proof that theDedekind reals form a set has seemed to requiremore than that. Themain purpose here is to show that exponentiation alone does not suffice for the latter, by furnishing a Kripke model of constructive set theory, Construct...

متن کامل

Normalization of IZF with Replacement

IZF is a well investigated impredicative constructive version of Zermelo-Fraenkel set theory. Using set terms, we axiomatize IZF with Replacement, which we call IZFR, along with its intensional counterpart IZF − R. We define a typed lambda calculus λZ corresponding to proofs in IZF−R according to the Curry-Howard isomorphism principle. Using realizability for IZF−R, we show weak normalization o...

متن کامل

Semantic Completeness of First-Order Theories in Constructive Reverse Mathematics

We introduce a general notion of semantic structure for first-order theories, covering a variety of constructions such as Tarski and Kripke semantics, and prove that, over Zermelo Fraenkel set theory (ZF), the completeness of such semantics is equivalent to the Boolean Prime Ideal theorem (BPI). In particular, we deduce that the completeness of that type of semantics for non-classical theories ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012